





# Stable Video Matting with Consistent Memory Propagation

<u>Peiqing Yang</u><sup>1</sup>, Shangchen Zhou<sup>1</sup>, Jixin Zhao<sup>1</sup>, Qingyi Tao<sup>2</sup>, Chen Change Loy<sup>1</sup> <sup>1</sup>S-Lab, Nanyang Technological University, <sup>2</sup>SenseTime Research, Singapore

**CVPR 2025 IK GitHub Stars** 

MMLab@NTU S-Lab, Nanyang Technological University



# What is <u>Video Matting</u> and <u>What</u> are the <u>Applications</u>?



Input Video

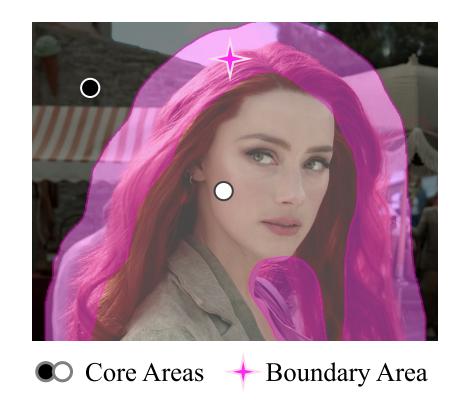




SAM 2: Segment Anything in Images and Videos

# Video Segmentation vs. Video Matting

- Video Matting (VM) poses additional challenges compared to Video Segmentation (VOS)
- VM requires:
  - [Core Areas] Accurate semantic detection
    - [Boundary Area] High-quality detail extraction







# Applications: Real-world Use Cases





Virtual Background



#### **Background Replacement**



### Visual Effects (VFX) Editing

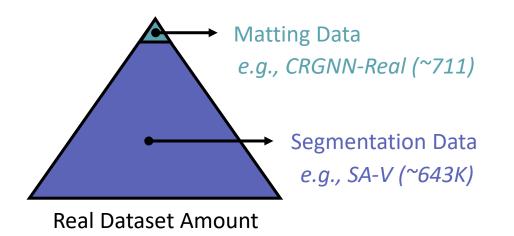
https://support.zoom.com/hc/zh/article?id=zm\_kb&sysparm\_article=KB0060398 https://www.youtube.com/watch?v=-tQCqvBhM6o https://www.youtube.com/watch?v=gyeif8yaHhM 5

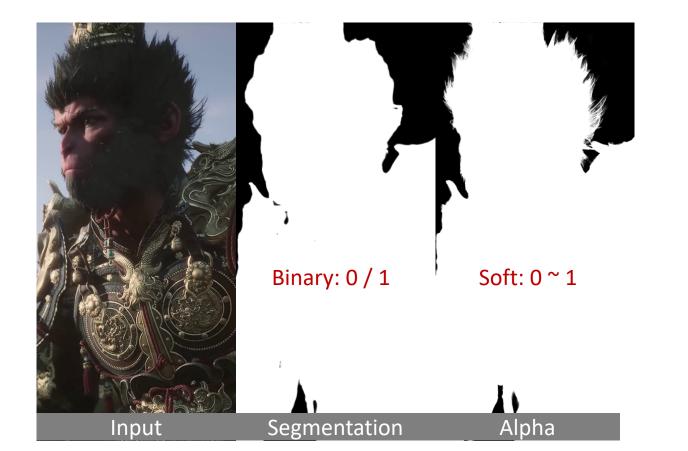


# What makes Video Matting even more <u>Challenging</u>?

# Challenge: Data

• Lack of *large-scale* real data with *alpha* masks





Extremely high annotation costs

If image is still possible, video is nearly impossible



# Challenge: Data

• Lack of *large-scale* real data with *alpha* masks



Input w/ Given Seg Mask

Matting Output (MaGGIe)



masks Real Dataset Amount Matting Data *e.g., CRGNN-Real (~711)* Segmentation Data *e.g., SA-V (~643K)* 

## Currently, only synthetic data available

# Distribution Gap: Harms real-world performance

MaGGIe: Mask Guided Gradual Human Instance Matting (CVPR 2024)

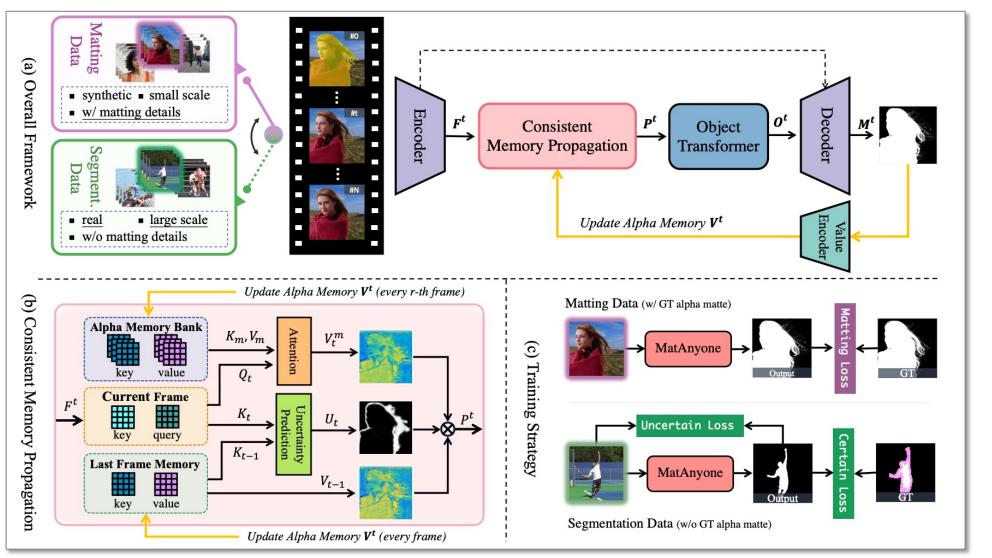




# What are our Key Designs to tackle the challenges?



# Our Framework



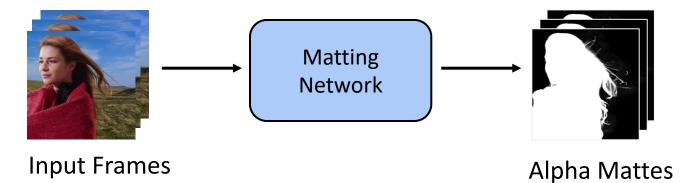
Key designs in:
Network
Training Strategy
Data





# Current Methods

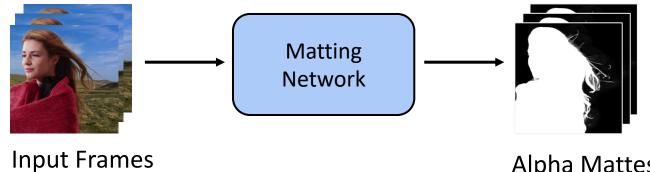
Auxiliary-free Methods (MODNet, RVM)





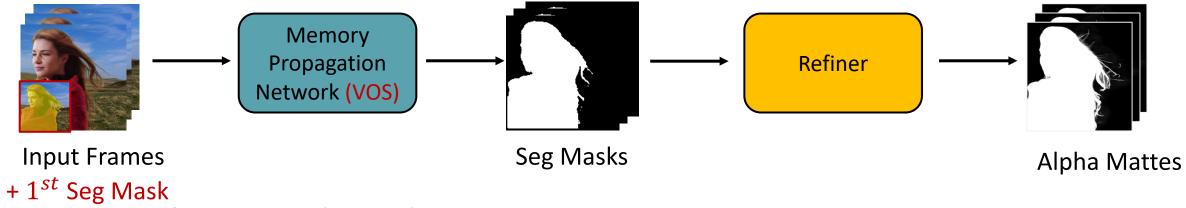
# Current Methods

Auxiliary-free Methods (MODNet, RVM)



**Alpha Mattes** 

### Mask-guided Methods (AdaM, MaGGle)

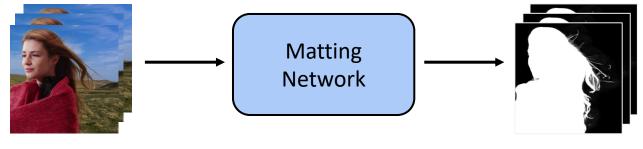


Adaptive Human Matting for Dynamic Videos (CVPR 2023) MaGGIe: Mask Guided Gradual Human Instance Matting (CVPR 2024)



# Current Methods

Auxiliary-free Methods (MODNet, RVM)



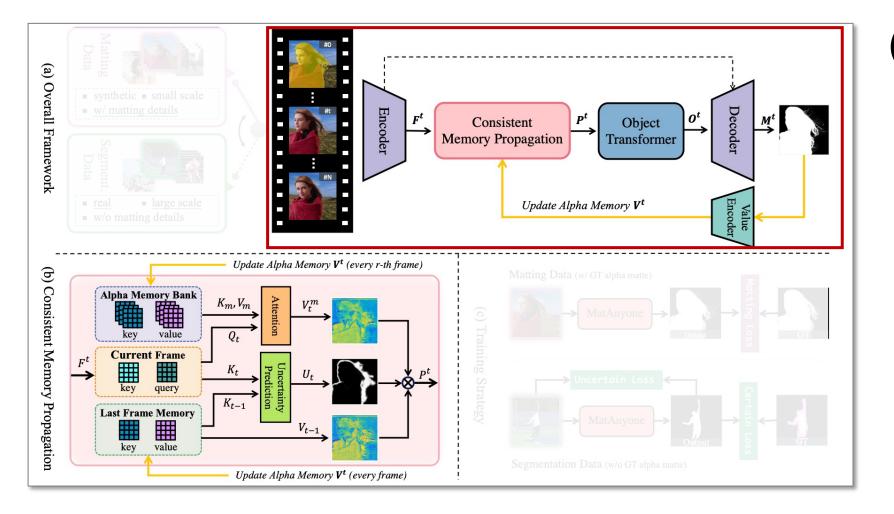
Input Frames

Alpha Mattes

### Mask-guided Methods (Ours)



# Network Design



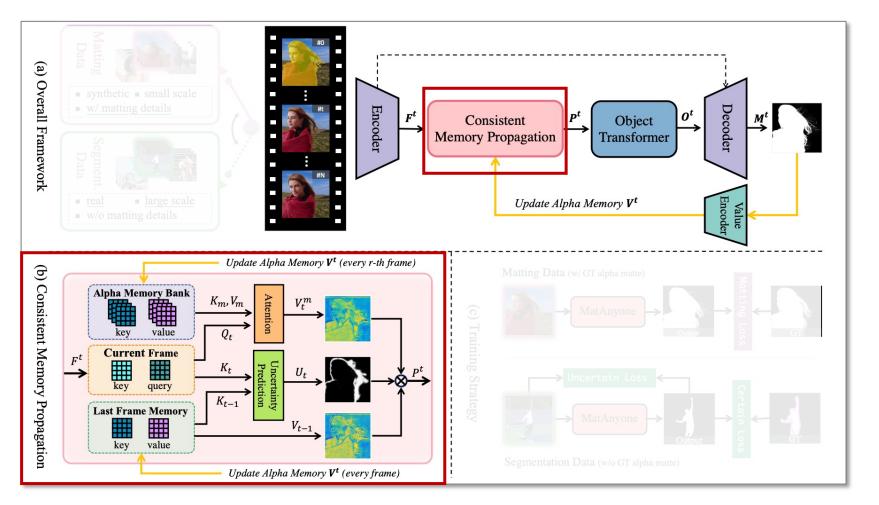
(1) Mask-guided VM:

Given first-frame

segmentation mask



# Network Design





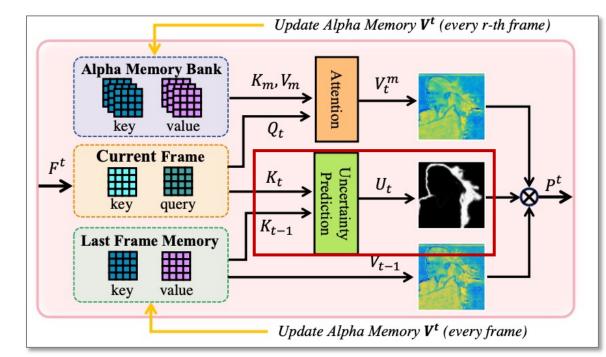
 (1) Mask-guided VM: Given first-frame segmentation mask
 (2) Consistent Memory Propagation: Region-adaptive memory fusion



# Consistent Memory Propagation (CMP)

## **Region-adaptive memory fusion:**

☆ "Change" probability:  $U_t \in [0, 1]$ 



$$P_{t} = V_{t}^{m} * \frac{U_{t}}{U_{t}} + V_{t-1} * (1 - U_{t})$$



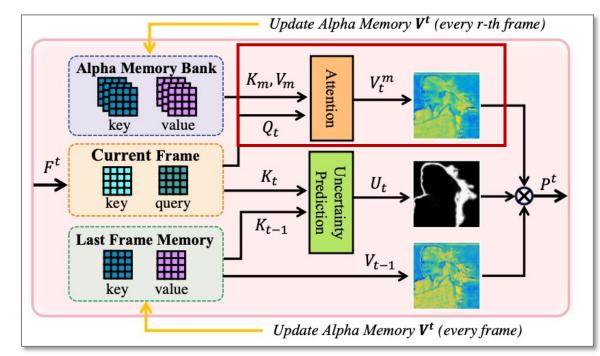


# Consistent Memory Propagation (CMP)

## **Region-adaptive memory fusion:**

- ☆ "Change" probability:  $U_t \in [0, 1]$
- "Large-change" region:

Mainly from memory bank  $(V_t^m)$ 



$$P_t = V_t^m * U_t + V_{t-1} * (1 - U_t)$$





Update Alpha Memory  $V^t$  (every r-th frame)

 $V_t^m$ 

# Consistent Memory Propagation (CMP)

## **Region-adaptive memory fusion:**

- ♦ "Change" probability:  $U_t \in [0, 1]$
- "Large-change" region: Mainly from memory bank  $(V_t^m)$
- "small-change" region: Mainly from last frame  $(V_{t-1})$

Uncertainty Prediction kev query  $K_{t-1}$ Last Frame Memory  $V_{t-1}$ kev value Update Alpha Memory V<sup>t</sup> (every frame)

**Alpha Memory Bank** 

**Current Frame** 

value

$$P_t = V_t^m * U_t + \frac{V_{t-1}}{V_{t-1}} * (1 - U_t)$$

Attention

 $K_m, V_m$ 

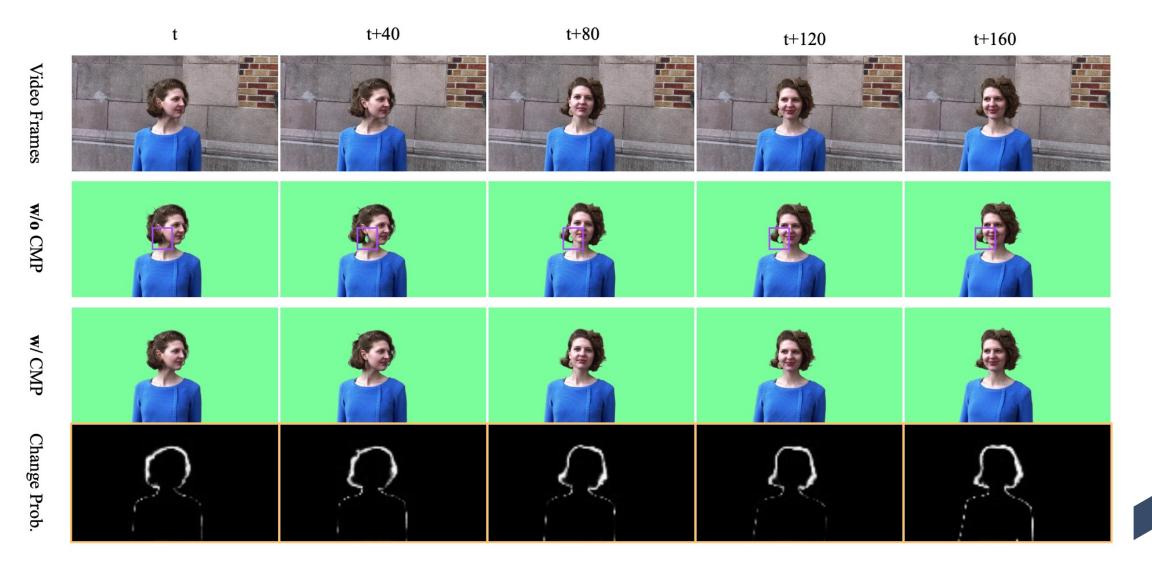
 $Q_t$ 

 $K_t$ 

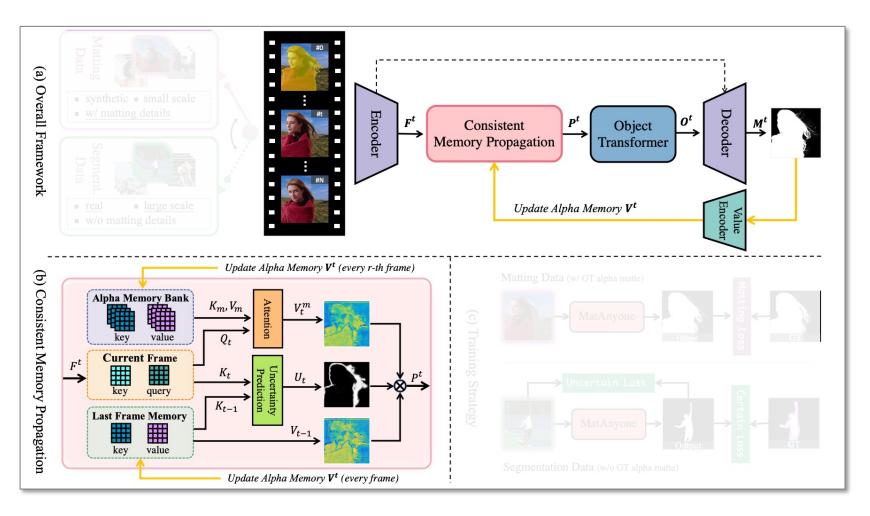


# Ablation: Effectiveness of CMP





# Network Design

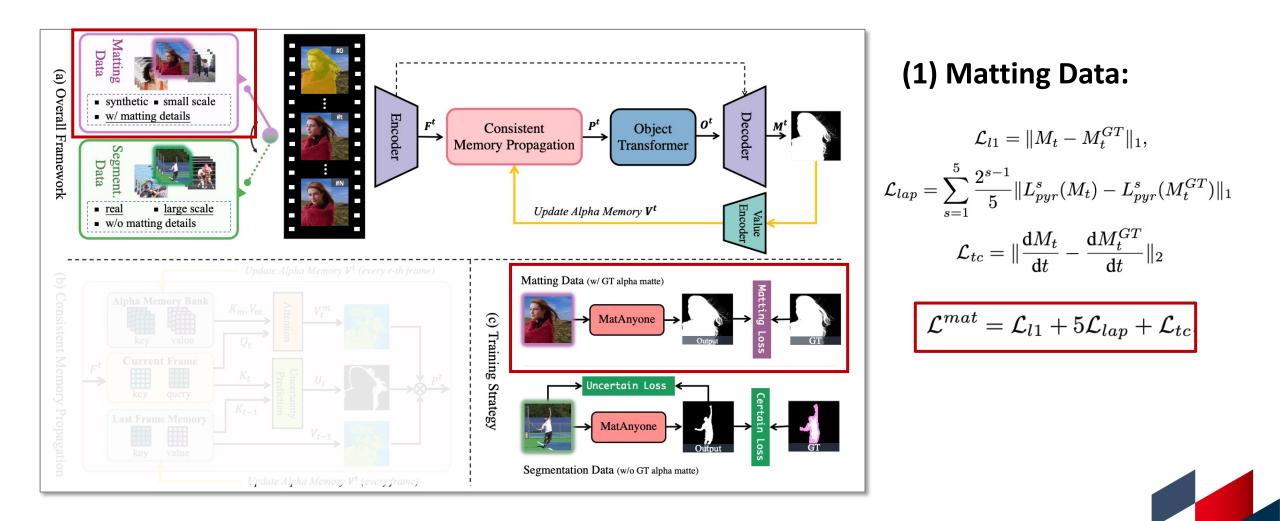




(1) Mask-guided VM: Given first-frame segmentation mask (2) Consistent Memory **Propagation: Region-adaptive** memory fusion (3) Recurrent Refinement: To reach the image-matting level



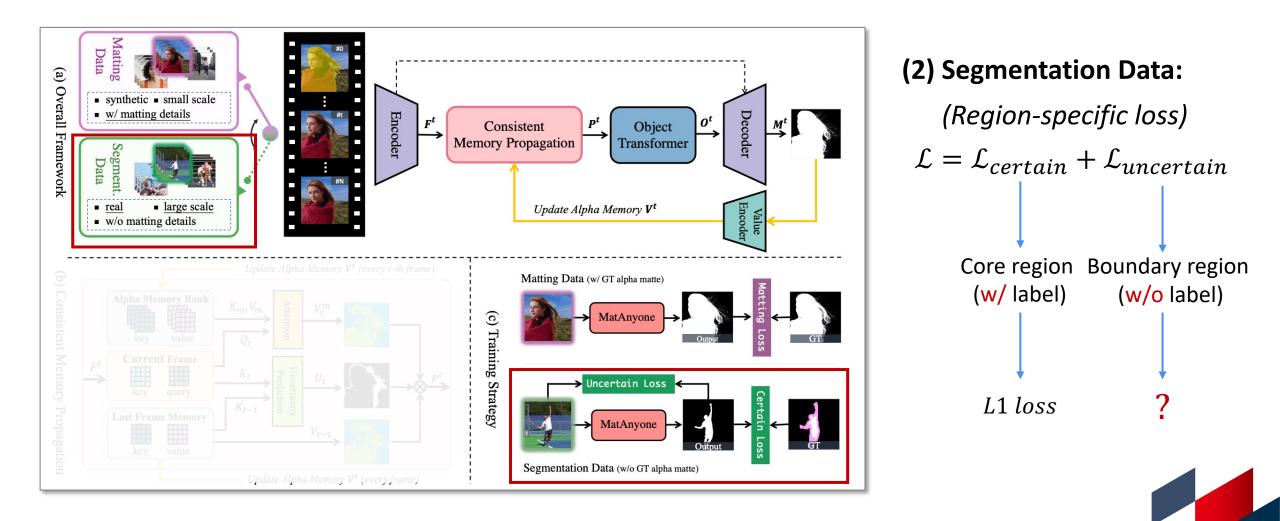
# **Training Strategy Design**



21



# Training Strategy Design



22



# How to supervise without GT alpha labels?

• DDC loss: supervise with input image ONLY

$$\mathcal{L}_{DDC} = \frac{1}{N} \sum_{i}^{N} \sum_{j} |\alpha_i - \alpha_j - \|\mathbf{I}_i - \mathbf{I}_j\|_2|$$
  
$$j \in \operatorname{argtopk}\{-\|\mathbf{I}_i - \mathbf{I}_j\|_2\}$$

• We propose scaled DDC loss to *relax* originally strict assumptions:

$$\mathcal{L}_{boundary} = \frac{1}{N} \sum_{i}^{N} \sum_{j} |(\alpha_i - \alpha_j)(\mathbf{F} - \mathbf{B}) - ||\mathbf{I}_i - \mathbf{I}_j||_2|$$
$$j \in \operatorname{argtopk}\{-||\mathbf{I}_i - \mathbf{I}_j||_2\}$$

• We call such strategy of using segmentation data as core supervision (CS):

$$\mathcal{L}^{cs} = \mathcal{L}_{core} + 1.5 \mathcal{L}_{boundary}$$



Video Frames

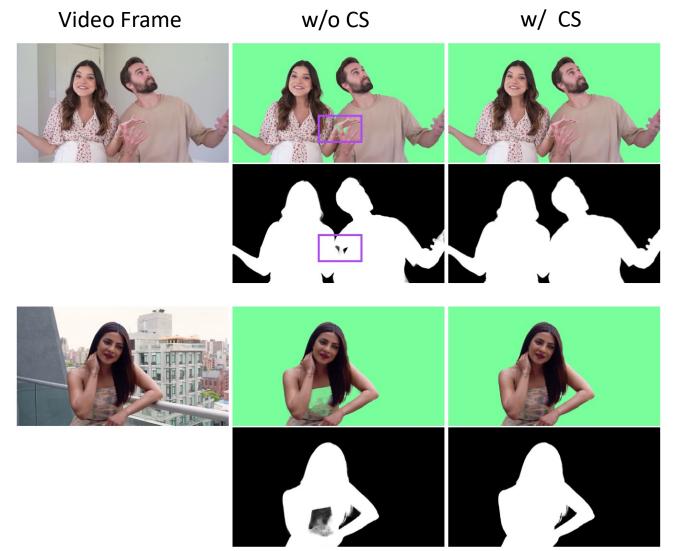
DDC Loss

Scaled DDC loss



# Ablation: Effectiveness of Core Supervision (CS)





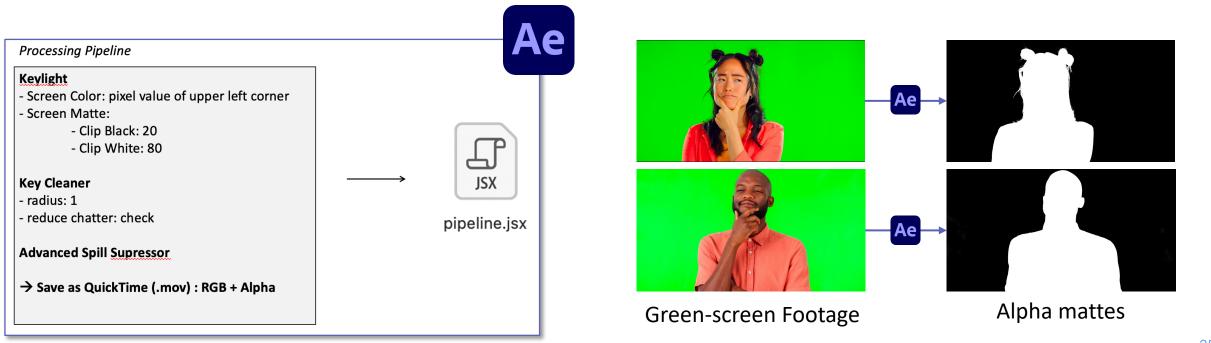
- Previous strategy: obvious semantics error due to the *weak* supervision from real segmentation data
- Our strategy: largely improves semantics accuracy thanks to the stronger supervision enabled with core supervision loss



# Data Design

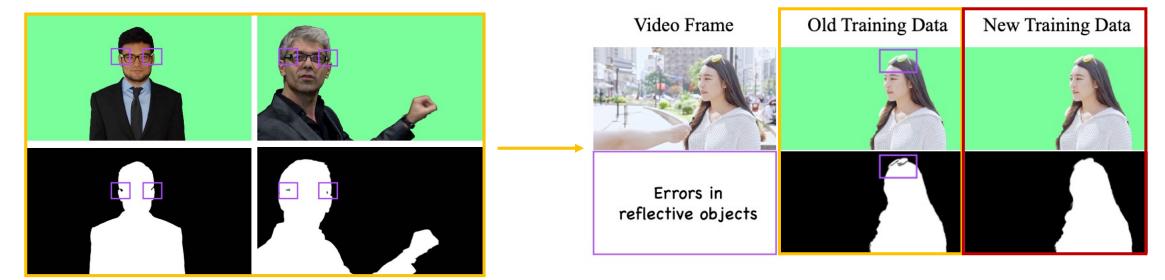
### **Training Data**

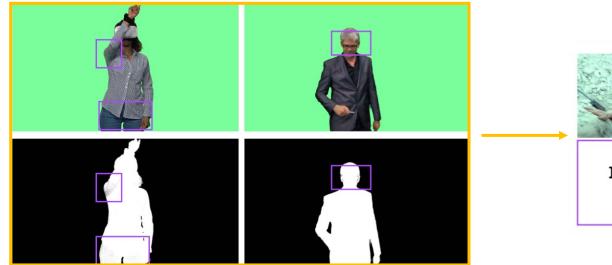
| Datesets     | VideoMatte240K (old train) [32] | <b>VM800</b> (new train)                   | VideoMatte (old test) [32] | YouTubeMatte (new test) |
|--------------|---------------------------------|--------------------------------------------|----------------------------|-------------------------|
| #Foregrounds | 475                             | 826                                        | 5                          | 32                      |
| Sources      | -                               | Storyblocks, Envato Elements, Motion Array | -                          | YouTube                 |
| Harmonized   | -                               | -                                          | x                          | $\checkmark$            |
|              |                                 |                                            |                            |                         |





# Ablation: Enhancement from New Training Data











#### **Testing Benchmark**

| Datesets     | VideoMatte240K (old train) [32] | VI32]VM800 (new train)VideoMatte (old test) [32]YouTubeMatte (new test)826532Storyblocks, Envato Elements, Motion Array-YouTube |   |              |
|--------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---|--------------|
| #Foregrounds | 475                             | 826                                                                                                                             | 5 | 32           |
| Sources      | -                               | Storyblocks, Envato Elements, Motion Array                                                                                      | - | YouTube      |
| Harmonized   | -                               | -                                                                                                                               | x | $\checkmark$ |
|              |                                 |                                                                                                                                 |   |              |

#### Harmonization when compositing







## How does our model <u>Perform</u>?



# Experiment Results – Synthetic Dataset

| Metrics   | Auxiliary-free (AF) Methods    |          |                | Mask-guided Methods |             |                          |             |
|-----------|--------------------------------|----------|----------------|---------------------|-------------|--------------------------|-------------|
|           | MODNet [24]                    | RVM [33] | RVM-Large [33] | AdaM [31]           | FTP-VM [20] | MaGGIe <sup>†</sup> [22] | Ours        |
| VideoMatt | $e (512 \times 288)$           |          |                |                     |             |                          |             |
| MAD↓      | 9.41                           | 6.08     | 5.32           | 5.30                | 6.13        | 5.49                     | <u>5.15</u> |
| MSE↓      | 4.30                           | 1.47     | 0.62           | 0.78                | 1.31        | 0.60                     | 0.93        |
| Grad↓     | 1.89                           | 0.88     | 0.59           | 0.72                | 1.14        | 0.57                     | 0.67        |
| dtSSD↓    | 2.23                           | 1.36     | 1.24           | 1.33                | 1.60        | 1.39                     | <u>1.18</u> |
| Conn↓     | 0.81                           | 0.41     | 0.30           | 0.30                | 0.41        | 0.31                     | <u>0.26</u> |
| VideoMatt | e (1920 × 1080)                |          |                | 1                   |             |                          |             |
| MAD↓      | 11.13                          | 6.57     | 5.81           | 4.42                | 8.00        | 4.42                     | <u>4.24</u> |
| MSE↓      | 5.54                           | 1.93     | 0.97           | 0.39                | 3.24        | 0.40                     | <u>0.33</u> |
| Grad↓     | 15.30                          | 10.55    | 9.65           | 5.12                | 23.75       | 4.03                     | <u>4.00</u> |
| dtSSD↓    | 3.08                           | 1.90     | 1.78           | 1.39                | 2.37        | 1.31                     | <u>1.19</u> |
| YoutubeM  | <i>atte</i> $(512 \times 288)$ |          |                |                     |             |                          |             |
| MAD↓      | 19.37                          | 4.08     | 3.36           | -                   | 3.08        | 3.54                     | 2.72        |
| MSE↓      | 16.21                          | 1.97     | 1.04           | -                   | 1.29        | 1.23                     | <u>1.01</u> |
| Grad↓     | 2.05                           | 1.34     | 1.03           | -                   | 1.16        | 1.10                     | <u>0.97</u> |
| dtSSD↓    | 2.79                           | 1.81     | 1.62           | -                   | 1.83        | 1.88                     | <u>1.60</u> |
| Conn↓     | 2.68                           | 0.60     | 0.50           | -                   | 0.41        | 0.49                     | <u>0.39</u> |
| YoutubeM  | <i>atte</i> (1920 × 1080)      |          |                | I                   |             |                          |             |
| MAD↓      | 15.29                          | 4.37     | 3.58           | -                   | 6.49        | 2.37                     | <u>1.99</u> |
| MSE↓      | 12.68                          | 2.25     | 1.23           | -                   | 4.58        | 0.98                     | <u>0.71</u> |
| Grad↓     | 8.42                           | 15.1     | 12.97          | -                   | 29.78       | <u>7.69</u>              | 8.91        |
| dtSSD↓    | 2.74                           | 2.28     | 2.04           | -                   | 2.41        | 1.77                     | <u>1.65</u> |

- Best MAD:
   Spatial Accuracy
- Best dtSSD:
   Temporal Stability
- Best Conn:
   Visual Quality





# Experiment Results – Synthetic Dataset



Video Frame

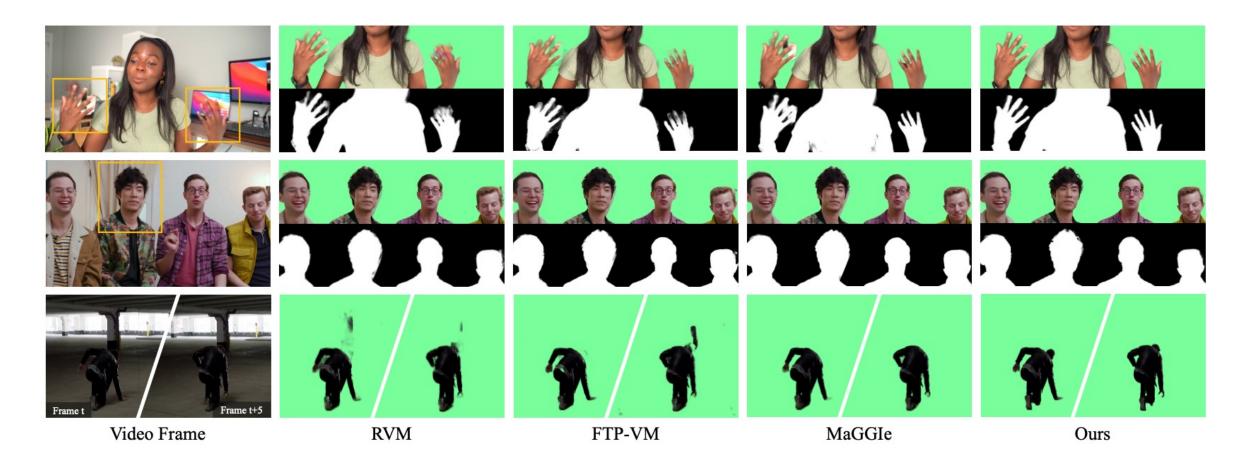








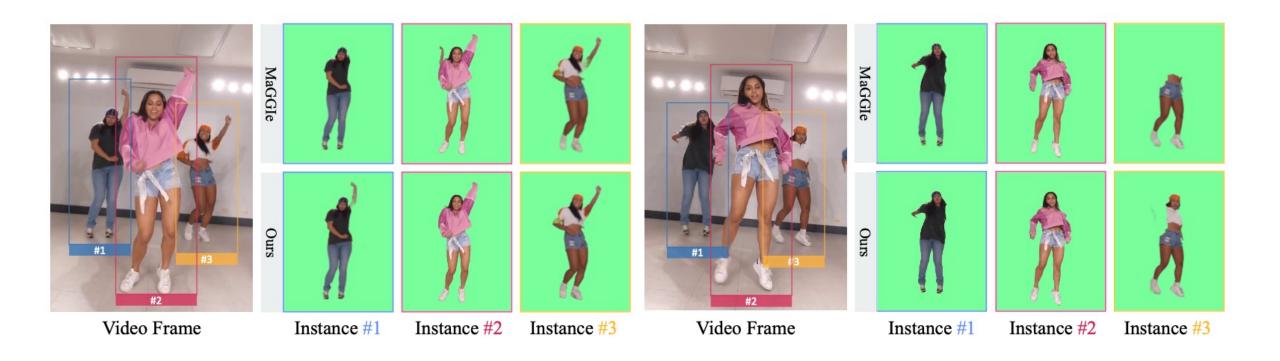
# Real Results - General Video Matting



31

## Real Results - Instance Video Matting





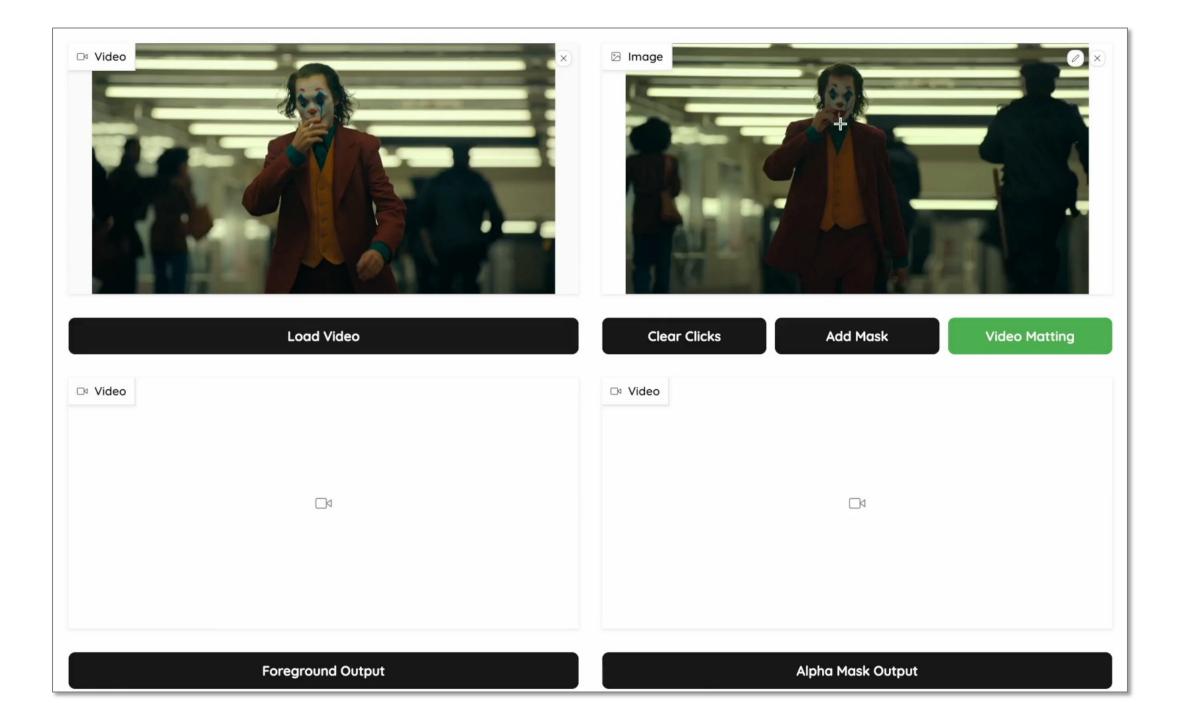
32

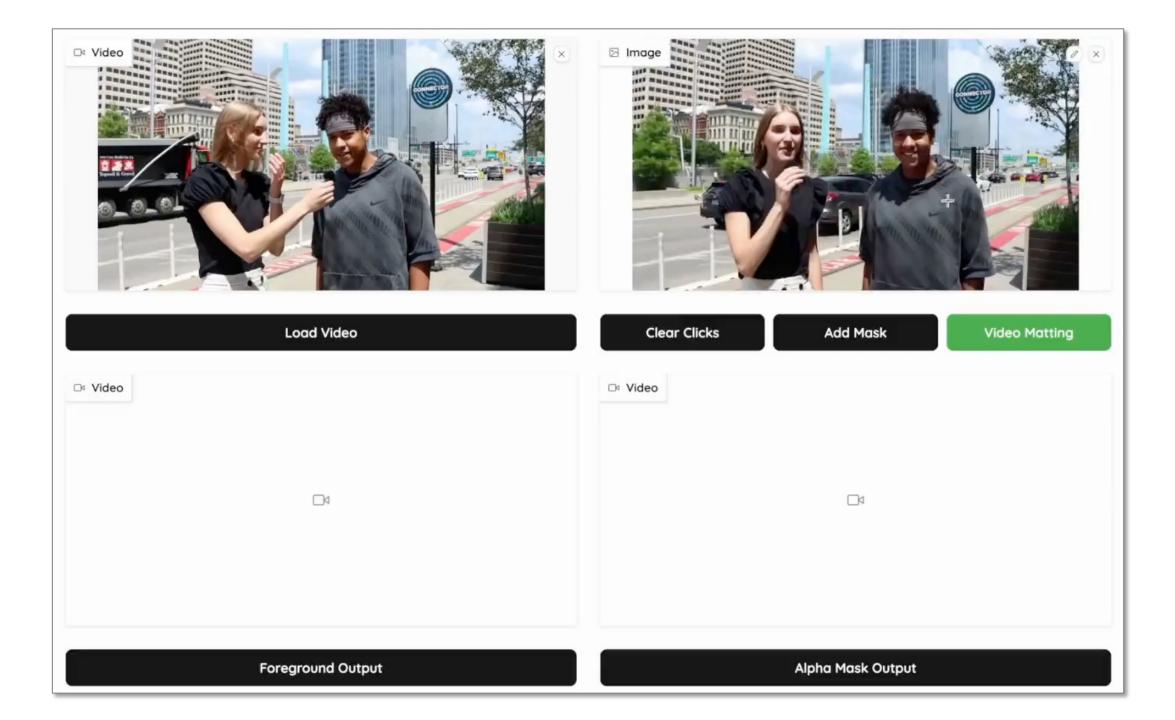


# Summary

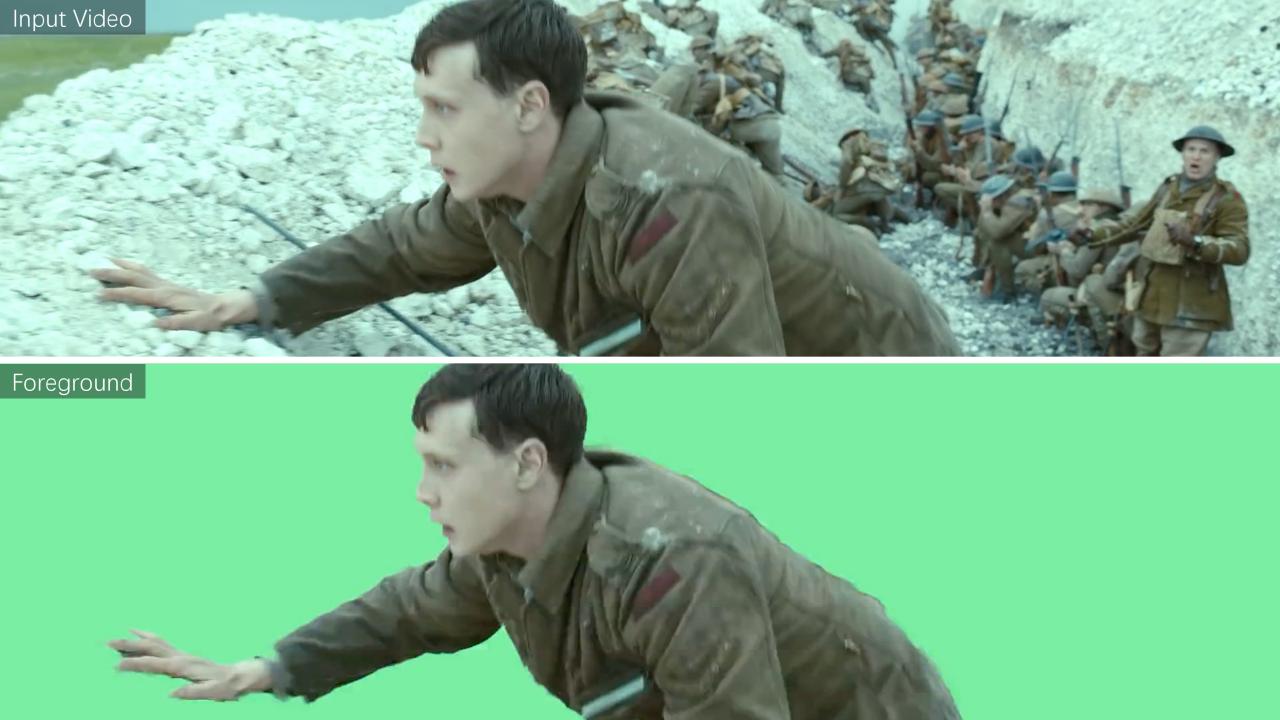
- <u>Stable</u> performance in both:
  - Semantics of core regions
  - Fine-grained boundary details
- <u>Practical</u> human video matting framework that:
  - Support target assignment
  - Increase user interactions to improve user experience

We are among the first video matting projects that provide interactive online demo that could be easily used with a few clicks.





## More Results on Video Matting Videos in the Wild

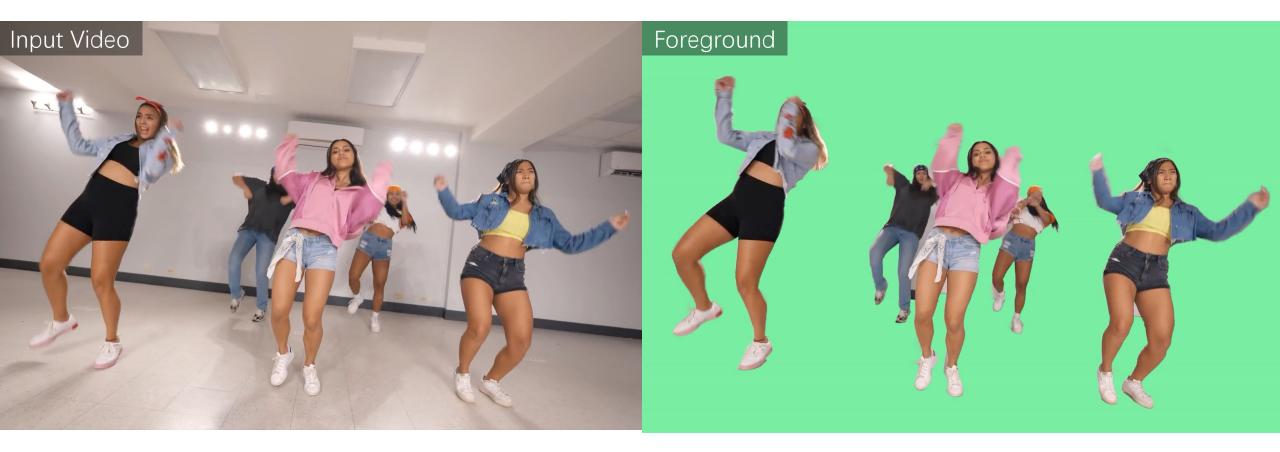


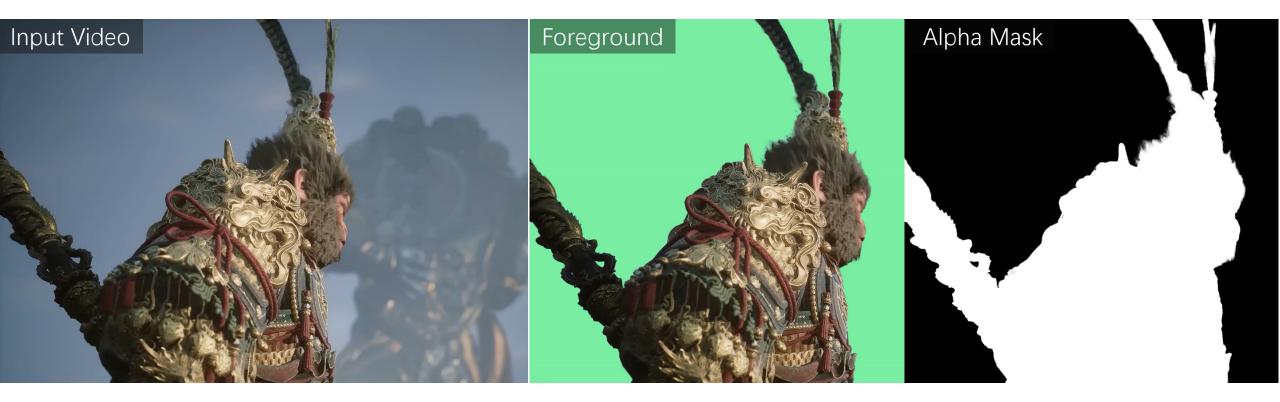


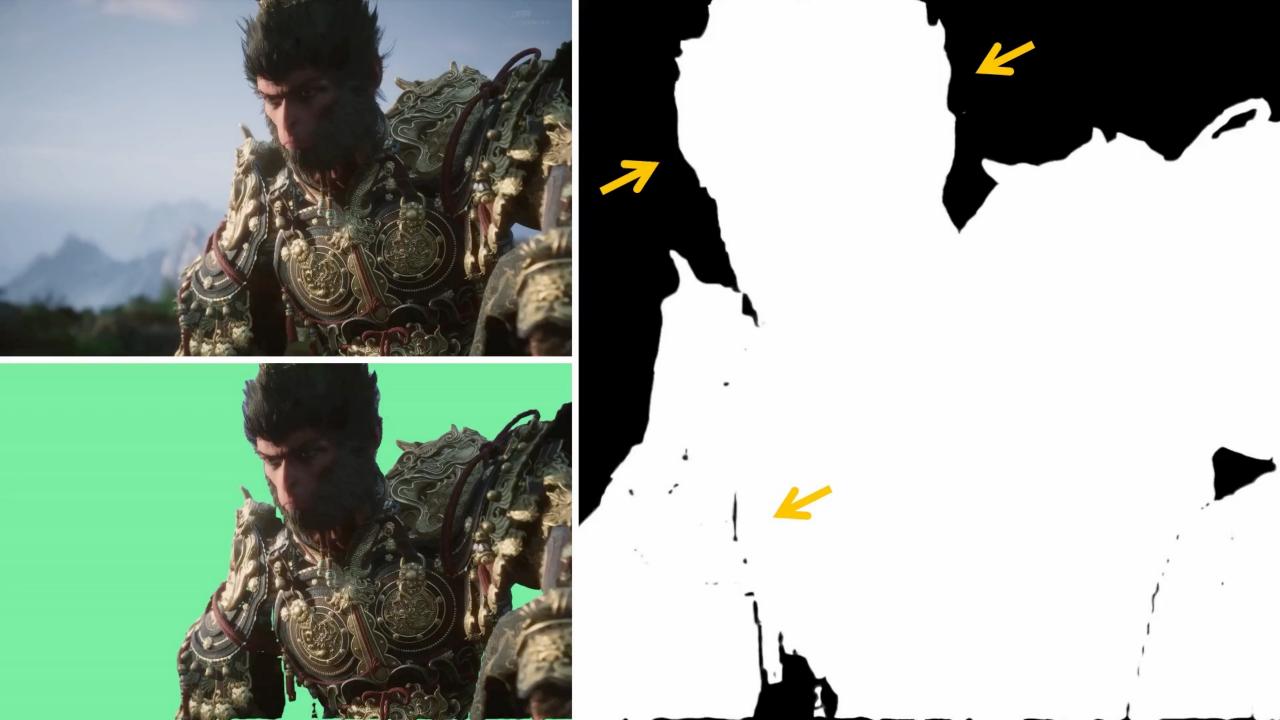


Alpha Mask











S-LAB FOR ADVANCED INTELLIGENCE

Q&A





### MatAnyone

### Stable Video Matting with Consistent Memory Propagation

<u>Peiqing Yang<sup>1</sup></u>, <u>Shangchen</u> Zhou<sup>1</sup>, <u>Jixin</u> Zhao<sup>1</sup>, <u>Qingyi</u> Tao<sup>2</sup>, Chen Change Loy<sup>1</sup> <sup>1</sup>S-Lab, Nanyang Technological University, <sup>2</sup>SenseTime Research, Singapore

CVPR 2025 🔥 1K GitHub Stars

