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What is Video Matting and What are the Applications?
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Input Video

Ours (VM)

SAM2 (VOS)

SAM 2: Segment Anything in Images and Videos



Video Segmentation vs. Video Matting 
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• Video Matting (VM) poses additional challenges 
compared to Video Segmentation (VOS)

• VM requires:

Core Areas Boundary Area

[Core Areas] Accurate semantic detection
[Boundary Area] High-quality detail extraction 



Applications: Real-world Use Cases
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Virtual Background

https://support.zoom.com/hc/zh/article?id=zm_kb&sysparm_article=KB0060398
https://www.youtube.com/watch?v=-tQCqvBhM6o
https://www.youtube.com/watch?v=gyeif8yaHhM

Background Replacement Visual Effects (VFX) Editing



What makes Video Matting even more Challenging?



Challenge: Data
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• Lack of large-scale real data with alpha masks

SegmentationInput Alpha

Binary: 0 / 1 Soft: 0 ~ 1

vExtremely high annotation costs

vIf image is still possible, video is nearly 
impossible

Matting Data

Segmentation Data

Real Dataset Amount

e.g., SA-V (~643K)

e.g., CRGNN-Real (~711)



Challenge: Data
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• Lack of large-scale real data with alpha masks

vCurrently, only synthetic data available

vDistribution Gap: Harms real-world
performance

Matting Output (MaGGIe)Input w/ Given Seg Mask

Segmentation prior brokenMaGGIe

MaGGIe: Mask Guided Gradual Human Instance Matting (CVPR 2024)

Matting Data

Segmentation Data

Real Dataset Amount

e.g., SA-V (~643K)

e.g., CRGNN-Real (~711)



What are our Key Designs to tackle the challenges?



Our Framework
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Key designs in:
v Network
v Training Strategy
v Data



Current Methods
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Matting 
Network

Auxiliary-free Methods (MODNet, RVM)

Input Frames Alpha Mattes

A Trimap-Free Portrait Matting Solution in Real Time (AAAI 2022)
Robust High-Resolution Video Matting with Temporal Guidance (WACV 2022)



Current Methods
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Matting 
Network

Memory 
Propagation 

Network (VOS)
Refiner

Auxiliary-free Methods (MODNet, RVM)

Mask-guided Methods (AdaM, MaGGIe)

Input Frames Alpha Mattes

Input Frames Seg Masks Alpha Mattes
+ 1!" Seg Mask

Adaptive Human Matting for Dynamic Videos (CVPR 2023)
MaGGIe: Mask Guided Gradual Human Instance Matting (CVPR 2024)



Current Methods
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Matting 
Network

Memory 
Propagation 

Network (VM)
Refiner

Auxiliary-free Methods (MODNet, RVM)

Mask-guided Methods (Ours)

Input Frames Alpha Mattes

Input Frames Seg Masks Alpha Mattes
+ 1!" Seg Mask



Network Design
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(1) Mask-guided VM:
Given first-frame 
segmentation mask



Network Design
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(1) Mask-guided VM:
Given first-frame 
segmentation mask

(2) Consistent Memory 
Propagation:

Region-adaptive
memory fusion



Consistent Memory Propagation (CMP)
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Region-adaptive memory fusion:
v ”Change” probability: 𝑈" ∈ [0, 1]

𝑃! = 𝑉!" ∗ 𝑈! + 𝑉!#$ ∗ 1 − 𝑈!



Consistent Memory Propagation (CMP)
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Region-adaptive memory fusion:
v ”Change” probability: 𝑈" ∈ [0, 1]
v “Large-change” region: 

Mainly from memory bank (𝑉"#)

𝑃! = 𝑉!" ∗ 𝑈! + 𝑉!#$ ∗ 1 − 𝑈!



Consistent Memory Propagation (CMP)
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Region-adaptive memory fusion:
v ”Change” probability: 𝑈" ∈ [0, 1]
v “Large-change” region: 

Mainly from memory bank (𝑉"#)
v “small-change” region: 

Mainly from last frame (𝑉"$%)
𝑃! = 𝑉!" ∗ 𝑈! + 𝑉!#$ ∗ 1 − 𝑈!



Ablation: Effectiveness of CMP 
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Network Design
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(1) Mask-guided VM:
Given first-frame 
segmentation mask

(2) Consistent Memory 
Propagation:

Region-adaptive
memory fusion

(3) Recurrent Refinement:
To reach the
image-matting level



Training Strategy Design
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(1) Matting Data:



Training Strategy Design
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(2) Segmentation Data:
(Region-specific loss)

ℒ = ℒ!"#$%&' + ℒ('!"#$%&'

Core region 
(w/ label)

?𝐿1 𝑙𝑜𝑠𝑠

Boundary region
(w/o label)



How to supervise without GT alpha labels?
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• DDC loss: supervise with input image ONLY

• We propose scaled DDC loss to relax
originally strict assumptions:

• We call such strategy of using segmentation 
data as core supervision (CS):

Training Matting Models without Alpha Labels (Arxiv 2024)



Ablation: Effectiveness of Core Supervision (CS)
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Video Frame w/o CS w/  CS 

• Previous strategy: obvious semantics 
error due to the weak supervision 
from real segmentation data

• Our strategy: largely improves 
semantics accuracy thanks to the 
stronger supervision enabled with 
core supervision loss



Data Design
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Training Data

Green-screen Footage Alpha mattes



Ablation: Enhancement from New Training Data 
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Data Design
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Testing Benchmark

Before After

Harmonization when compositing

High-Resolution Image/Video Harmonization (ECCV 2022)



How does our model Perform?



Experiment Results – Synthetic Dataset

29

• Best MAD: 
vSpatial Accuracy

• Best dtSSD:
vTemporal Stability

• Best Conn: 
vVisual Quality



Experiment Results – Synthetic Dataset
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Real Results - General Video Matting
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Real Results - Instance Video Matting
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Summary
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• Stable performance in both:
• Semantics of core regions 
• Fine-grained boundary details

• Practical human video matting framework that:
• Support target assignment
• Increase user interactions to improve user experience

🏆We are among the first video matting projects that provide interactive 
online demo that could be easily used with a few clicks.
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More Results on Video Matting
Videos in the Wild
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Input Video

Foreground
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Input Video

Foreground Alpha Mask
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Input Video Foreground
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Input Video Foreground Alpha Mask
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Q&A

DemoCode


